skip to main content


Search for: All records

Creators/Authors contains: "Qi, Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 15, 2024
  2. We herein report the fabrication of a Velcro-mimicking surface based on polymer brushes. Using poly(ε-caprolactone) (PCL) as the model polymer, polymer loop brushes (PLBs) and singly tethered polymer brushes (STPBs) with nearly identical tethering point density and brush heights were synthesized using a polymer single crystal (PSC)-assisted grafting-to method. Atomic force microscopy-based single molecular force spectroscopy (AFM-SMFS) and macroscale lap-shear experiments both demonstrated that the PLBs led to strong adhesion that is up to ∼10 times greater than the STPBs, which is attributed to the enriched chain entanglement between the probing polymer and the brushes. We envisage that our results will pave the way towards a new materials design for strong adhesives and nanocomposites. 
    more » « less
  3. Nanocomposite polymer electrolytes (CPEs) are promising materials for all-solid-state lithium metal batteries (LMBs) due to their enhanced ionic conductivities and stability to the lithium anode. MXenes are a new two-dimensional, 2D, family of early transition metal carbides and nitrides, which have a high aspect ratio and a hydrophilic surface. Herein, using a green, facile aqueous solution blending method, we uniformly dispersed small amounts of Ti 3 C 2 T x into a poly(ethylene oxide)/LiTFSI complex (PEO 20 -LiTFSI) to fabricate MXene-based CPEs (MCPEs). The addition of the 2D flakes to PEO simultaneously retards PEO crystallization and enhances its segmental motion. Compared to the 0D and 1D nanofillers, MXenes show higher efficiency in ionic conductivity enhancement and improvement in the performance of LMBs. The CPE with 3.6 wt% MXene shows the highest ionic conductivity at room temperature (2.2 × 10 −5 S m −1 at 28 °C). An LMB using MCPE with only 1.5 wt% MXene shows rate capability and stability comparable with that of the state-of-the-art CPELMBs. We attribute the excellent performance to the 2D geometry of the filler, the good dispersion of the flakes in the polymer matrix, and the functional group-rich surface. 
    more » « less
  4. Crystallization is incommensurate with nanoscale curved space due to the lack of three dimensional translational symmetry of the latter. Herein, we report the formation of single-crystal-like, nanosized polyethylene (PE) capsules using a miniemulsion solution crystallization method. The miniemulsion was formed at elevated temperatures using PE organic solution as the oil phase and sodium dodecyl sulfate as the surfactant. Subsequently, cooling the system stepwisely for controlled crystallization led to the formation of hollow, nanosized PE crystalline capsules, which are named as crystalsomes since they mimic the classical self-assembled structures such as liposome, polymersome and colloidosome. We show that the formation of the nanosized PE crystalsomes is driven by controlled crystallization at the curved liquid/liquid interface of the miniemulson droplet. The morphology, structure and mechanical properties of the PE crystalsomes were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic force spectroscopy. Electron diffraction showed the single-crystal-like nature of the crystalsomes. The incommensurateness between the nanocurved interface and the crystalline packing led to reduced crystallinity and crystallite size of the PE crystalsome, as observed from the X-ray diffraction measurements. Moreover, directly quenching the emulsion below the spinodal line led to the formation of hierarchical porous PE crystalsomes due to the coupling of the PE crystallization and liquid/liquid phase separation. We anticipate that this unique crystalsome represents a new type of nanostructure that might be used as nanodrug carriers and ultrasound contrast agents. 
    more » « less
  5. Abstract

    In recent decades, extensive studies have been devoted to assembling nanoparticles (NPs) into various ordered structures to achieve novel optical properties. However, it still remains a challenging task to assemble NPs into cyclic one‐dimensional (1D) shapes, such as rings and frames. Herein, we report a directed assembly method to precisely assemble NPs into well‐defined, free‐standing frames using polymer single crystals (PSCs) as the template. Preformed poly(ethylene oxide) (PEO) single crystals were used as the template to direct the crystallization of block copolymer (BCP) poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) (PEO‐b‐P4VP), which directs the gold NPs (AuNPs) to form AuNP frames. By controlling the PSC growth, we were able to, for the first time, precisely tune both the size and width of the AuNP frame. These novel AuNP frames topologically resemble NP nanorings and cyclic polymer chains, and show unique surface plasmon resonance (SPR) behaviors.

     
    more » « less